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Abstract

Entanglement is the cornerstone of all new technological implica-

tions of quantum mechanics which meanwhile extend into the realm

of theoretical chemistry. In this contribution the relation between

entanglement and phase factors is investigated in terms of statistical

operators. After the introduction of a simplified definition of the sepa-

rability of a statistical operator a new way to obtain phase information

from experiment is presented, and the emergence of separability from
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non-separability is explained by the loss of a special phase operator

containing the quantum part of the system’s information.
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1 Introduction

The physical principle underlying the notion of entanglement has been de-

tected by Schrödinger [1] in his first analysis of the Einstein-Podolsky-Rosen

(EPR) problem [2]. Meanwhile the most fascinating technological implica-

tions of quantum mechanics (QM) are based on said notion. Entanglement

is the essential ingredient for both quantum cryptography, quantum comput-

ing, and quantum teleportation [3]. While quantum cryptography makes use

of photons to transmit messages tap-proof, most feasibility studies of quan-

tum computers rely on quantum dots (clusters) or molecules and therefore

already enter the realm of theoretical chemistry, and though the first ex-

periments regarding quantum teleportation have been performed using pho-

tons [4–8], teleportation with the massive particles chemists deal with is, of

course, of much higher interest1. Therefore it is evident that the new quan-

tum techniques enter the sphere of interest of chemists, and in consequence

theoretical chemistry has to concern itself with entanglement as well. The

problem, however, is: What in fact is entanglement? We will address this

question in connection with statistical operators which allow for the most

general formulation of QM.

1Up to now, however, it is an open question whether entanglement can be realized

with molecules at all. A corresponding experimentum crucis has been proposed by the

author [10].
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Entanglement shows up in cases where a former unit dissociates into sim-

pler sub-systems. Corresponding processes are known in chemistry quite well.

The real-space partitioning of a molecule into sub-units is still a challenging

problem in theoretical chemistry, because during this process a certain en-

tanglement of the sub-units emerges, and it is very difficult to get rid of it

without destroying elementary correlations between the sub-units. So, apart

from its evident importance for the foundations of physics, entanglement

plays a role in chemistry too. Since the work of Mead and Berry it is known

that such dissections of quantum systems give rise to a non-trivial phase

factor (for an introduction to this field see [9]), i. e., even in chemistry the

connection between entanglement and phase is of relevance. The analysis of

said interplay will be the topic of this article.

2 Preliminaries and definitions

An operator ρ on a Hilbert space H is a statistical operator iff it is self-adjoint,

possesses a non-negative spectrum, and satisfies Tr ρ = 1. The statistical

operator defines what we call the state of an ensemble. Now assume that

a source produces pairs of entities (Ai,Bi) which dissociate after generation.

The Ai are sent to an observer named Alice while the Bi are sent to her

colleague Bob. Each of them measures a rotationally variant property type
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as, e. g., spin or polarization on Ai and Bi, respectively. Let the measurement

apparatus A (B) be represented by the self-adjoint operator Â (B̂). We

assume that the eigenvalues of both operators are ±1, and that H is the

2 × 2-dimensional Hilbert space HA ⊗ HB. We further assume that the

orientation of A with respect to the laboratory coordinate system is given by

the vector ~a, and that

Â = σ3 =








1 0

0 −1







. (1)

Now let apparatus B differ from A insofar as the vector ~b determining its

actual internal status can be obtained from ~a by a rotation around an axis

perpendicular to it. Then B̂ emerges from Â by a rotation around the angle

χ between ~a and ~b.

⇒ B̂ =








cosχ sinχ

sinχ − cosχ








(2)

In complete analogy we define two further operators, Â′ and B̂′, where Â′

represents apparatus A rotated with respect to its first position (determined

by ~a) by an angle ϕ. B̂′ stands for B rotated with respect to ~a by an angle

ψ. Note that Â and Â′ as well as B̂ and B̂′ are in general non-commuting.

The determinants of the commutators attain their maximum if ϕ = π
2

and

ψ = χ+ π
2
, respectively.

With these four apparatus settings we can perform four experiments, i.
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e., four large series of single runs. Each single run in one series yields an

outcome Oi = Ai · Bi. The result of each experiment is the average over all

single runs which, in terms of QM, is given by

O(~a,~b) = Tr
(

(Â⊗ B̂) ρ
)

. (3)

Finally we calculate the correlation function

∆
def
= |O(~a,~b) −O(~a,~b ′)| + |O(~a ′,~b) − O(~a ′,~b ′)|. (4)

The actual value of ∆ is contextual, i. e., it depends not only on the statistical

operator in question but also on the choice of the apparatus axes.

Let {|αi〉|βi〉} be an orthonormal basis of H. Then, in the most general

case, ρ is given by

ρ =
∑

i,j,k,l

cij,kl Âij ⊗ B̂kl (5)

where Âij = |αi〉〈αj| and B̂kl defined analogously. In general the non-

diagonal coefficients are complex numbers r exp(iφ) where the exp(iφ) are

called the phase factors of the statistical operator.

The physically most important potential property of a statistical operator

acting on a product Hilbert space as HA ⊗ HB is its separability. I call a

statistical operator separable iff it can be decomposed according to

ρ = ρA ⊗ ρB, (6)
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with

ρA =
∑

i,j

aijÂij (7)

on HA and ρB defined analogously on HB. It is important to note that this

definition differs from the usual one where an operator is called separable iff

it can be decomposed into a convex sum of direct products as on the right

side of (6). However, the definition used in this article offers a couple of ad-

vantages with respect to the usual one which are discussed in detail in [11].2

Moreover it must be emphasized that the simplified approach to separability

is corroborated by Schrödinger’s own statements: Suspending entanglement

means that each of the sub-systems now is furnished with an independent

statistical operator of its own (see [1], p. 559). So in Schrödinger’s view

disentanglement and separability (in the sense of eq. 6) are equivalent de-

2Furthermore it is worth to note that there is some ambiguity in these definitions

anyway. Abouraddy et al. say that |Ψ〉 ∈ HA ⊗ HB is factorizable if and only if

|Ψ〉 = |ΨA〉 ⊗ |ΨB〉 and entangled if not [12]. Tsallis et al., however, divide the set

of statistical operators as follows: ρ is uncorrelated if ρ = ρA ⊗ ρB. It is separable if

ρ =
∑

i piρA,i⊗ρB,i, and it is entangled (which is considered equivalent to non-separable)

if not [13]. But Lomonaco jr. states explicitly [14] that a pure ensemble is separable if it

satisfies a condition equivalent to the one of Abouraddy et al. while in the case of a mixed

ensemble ”one possible definition” is the one used by Tsallis et al. Obviously there is no

definition which is accepted by all colleagues in common. This situation really demands

for a simplified approach as presented in [11, 15].
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scriptions of the same fact. This is reinforced by another quote: ”Let x and y

stand for all the coordinates of the first and second systems, respectively . . .

What constitutes the entanglement is that Ψ is not a product of a function of

x and a function of y” (see [1], p. 556). So the usual definition of separability

is nothing but the effect of a misreading of Schrödinger’s eq. 1!

Finally it is instructive to have a look on the result of the diagonalization

of ρ from (5). In the 2 × 2 case we obtain

ρdiag = c̃1111 Â11⊗B̂11 + c̃1122 Â11⊗B̂22 + c̃2211 Â22⊗B̂11 + c̃2222 Â22⊗B̂22 (8)

which can be brought into a formal analogy with the usual separability defi-

nition

ρusual
s =

∑

i

pi ρAi ⊗ ρBi. (9)

It is, however, easy to see that ρdiag is non-separable unless c̃1111 = c̃2211 and

c̃1122 = c̃2222 which, in general, is not the case.

A measure of the non-separability of a statistical operator ρ1 with respect

to a second one can be defined as the negative difference of the two von

Neumann entropies S1 and S2, where Si = −Tr(ρi ln ρi) [11]. Note that

a related approach has been proposed for the partitioning of a molecule’s

electron density into atom contributions [16].

To sum up: An ensemble consisting of two-sub-ensembles is said to be

entangled if its statistical operator is non-separable in the sense of a violation
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of eq. 6. In consequence an ensemble consisting of two-sub-ensembles is said

to be disentangled if its statistical operator is given in product form.

Now the importance of ∆ becomes clear, because its upper bound dif-

fers significantly depending on the statistical operator in question [17]3, and

∆ can be determined experimentally. So it can be decided by experiment

whether a given ensemble is entangled or not.

With respect to the (non-)separability of a statistical operator its phase

seems to be of completely inferior importance. Not even the question whether

ρ defines a pure or a mixed state depends on φ. However, we will see in the

following section that the correlation function strongly depends on the phase

and in consequence can unveil some information about it.

The determination and control of phase, the so-called shaping of a wave-

function, has been realized experimentally by Weinacht and coworkers [18,

19]. The consequences for theoretical chemistry have been analyzed, on the

basis of Wigner and Husimi functions, by Schwarz [20]. Up to now, however,

there is no formulation of the phase problem in terms of statistical operators,

and it will be shown in the following that the exploitation of the correlation

function offers an elegant tool to obtain phase information.

3A separable one leads to max(∆) =
√

2 whereas a non-separable one can surmount

this limit by a factor of 2.
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3 Dependence of the correlation function on

the phase of ρ

3.1 Maximally non-commuting operators

Using the angle settings ϕ = π/2 and ψ = χ + π/2 which maximize both

det([Â, Â′]) and det([B̂, B̂′]), and choosing χ = π/4 we obtain the operators

Â′, B̂ and B̂′ in matrix form as

Â′ = σ1 =








0 1

1 0







, (10)

B̂ =

√
2

2
(σ1 + σ3) =

√
2

2








1 1

1 −1







, (11)

and

B̂′ =

√
2

2
(σ1 − σ3) =

√
2

2








−1 1

1 1







. (12)

Then the operator ρ defined by (5) yields

∆ =
√

2 |1 − 2(c1122 + c2211)| + 2
√

2 |r1 cosφ1 + r2 cosφ2| (13)

where we have made use of the representation

r1 exp(iφ1) = c1221 and r2 exp(iφ2) = c1212. (14)

Obviously a lot of the non-diagonal coefficients of ρ do not enter the result

(13), i. e., for our present purposes we may omit them in (5) so that ρ can
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be written in the simplified form

ρ =


















c1111 0 0 r2 exp(iφ2)

0 c1122 r1 exp(iφ1) 0

0 r1 exp(−iφ1) c2211 0

r2 exp(−iφ2) 0 0 c2222


















. (15)

This formula also contains as special cases the four statistical operators which

can be defined using the Bell-type basis

|Ψ±

e 〉
def
=

1√
2

(|α1〉|β1〉 ± |α2〉|β2〉) (16)

|Ψ±

o 〉
def
=

1√
2

(|α1〉|β2〉 ± |α2〉|β1〉) (17)

according to

ρ1,2
def
= |Ψ±

e 〉 〈Ψ±

e |

=
1

2
(Â11 ⊗ B̂11 ± Â12 ⊗ B̂12 ± Â21 ⊗ B̂21 + Â22 ⊗ B̂22) (18)

ρ3,4
def
= |Ψ±

o 〉 〈Ψ±

o |

=
1

2
(Â11 ⊗ B̂22 ± Â12 ⊗ B̂21 ± Â21 ⊗ B̂12 + Â22 ⊗ B̂11). (19)

ρ4, e. g., which represents the singlet state frequently discussed in the EPR

context, is obtained from (15) if c1111 = c2222 = r2 = 0. It is easy to see that

each of the four operators causes ∆ to be equal to 2
√

2.

In general the amplitudes of the non-diagonal elements of (15) are subject

to certain conditions necessary to secure the non-negativity of the spectrum
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of ρ. The eigenvalues are given by the two following equations:

(c1122 − λ)(c2211 − λ) = r2

1 (20)

(c1111 − λ)(c2222 − λ) = r2

2
(21)

It is easy to see that all λ ≥ 0 iff

c1122c2211 ≥ r2

1 and c1111c2222 ≥ r2

2. (22)

In order to maximize the influence of the phase we have to maximize the

coefficients r1,2, i. e., in (22) we have to replace the ”greater or equals” sign

by the simple equals sign. From (13) we then obtain

∆ =
√

2 |1 − 2(c1122 + c2211)| + 2
√

2 |√c1122c2211 cosφ1 +
√
c1111c2222 cos φ2|.

(23)

Let us consider two extreme situations. We first assume that either c1122 =

c2211 = 1/2 or c1111 = c2222 = 1/2 which means that operators similar to the

four operators defined in (18) and (19), respectively, are realized. Then

∆ =
√

2 |1 + cosφ| (24)

so that
√

2 ≤ ∆ ≤ 2
√

2. ∆ can attain its maximal value only if exp(iφ), the

phase contribution to ρ, is ±1. If, on the other hand, all diagonal coefficients

are equal to 1/4, we arrive at

∆ =

√
2

2
| cosφ1 + cosφ2| =

√
2

∣
∣
∣
∣
∣
cos

2φ1 + δφ

2
cos

δφ

2

∣
∣
∣
∣
∣
, (25)
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where we have set φ2 = φ1 + δφ. In this case the maximum is obtained if

both phase contributions amount to ±1(φ1, φ2 ∈ {0, 2π, 4π, . . .}). So we may

conclude that, if we could prepare an ensemble either in the state

ρ =
1

2


















0 0 0 0

0 1 exp(iφ) 0

0 exp(−iφ) 1 0

0 0 0 0


















(26)

or in

ρ =
1

4


















1 0 0 exp(iφ2)

0 1 exp(iφ1) 0

0 exp(−iφ1) 1 0

exp(−iφ2) 0 0 1


















, (27)

then the measurement of ∆ would yield the phase information immediately.

Dephasing is the process when phase coherence gets lost, i. e., if φ1

becomes 6= φ2. What happens in this case? [Recall that ρ4, e. g., cannot

be subject to dephasing because of the complete absence of non-diagonal

terms.] The effect of dephasing is maximal if ∆ becomes equal to 0. (25)

tells us that this is the case if either δφ = π or δφ = π − 2φ1. Therefore

a ∆-measurement of the state defined by (27) also yields information about

the degree of dephasing.

To sum up: Under certain circumstances a lot of information about the
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phase of a statistical operator can be obtained.

3.2 Commuting operators

The other extreme is on hand if sinϕ = 0 and ψ = χ+ π. We choose ϕ = π,

because otherwise Â′ would be identical to Â, and set again χ = π/4. A

lengthy but straightforward calculation yields

∆ =
√

2 |1 − 2(c1122 + c2211) + 2r3 cosφ3 − 2r4 cosφ4| (28)

where

r3 exp(iφ3) = c1112 and r4 exp(iφ4) = c2212. (29)

Ignoring all those non-diagonal elements which do not appear in (28), ρ can

be brought into the block-diagonal form

ρ =


















c1111 r3 exp(iφ3) 0 0

r3 exp(−iφ3) c1122 0 0

0 0 c2211 r4 exp(iφ4)

0 0 r4 exp(−iφ4) c2222


















. (30)

In contrast to the previous case, however, the neglect of the non-diagonal

elements mentioned above now leads to a significant change in the character

of ρ insofar as (30) defines a separable operator, because it can be written as

ρ = (a11Â11 + a22Â22)
︸ ︷︷ ︸

=ρA

⊗ρB (31)
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with ρB analogous to (7). We therefore always obtain ∆ ≤ √
2.

The diagonalization of the two blocks leads to conditions on r3,4 similar

to (22) which means that we finally arrive at the same conclusions regarding

the availability of phase information as in the previous section.

4 Separability and the loss of phase informa-

tion

What has happened in the transition from the general, non-separable oper-

ator

ρnon−sep =


















c1111 r3 exp(iφ3) r5 exp(iφ5) r2 exp(iφ2)

r3 exp(−iφ3) c1122 r1 exp(iφ1) r6 exp(iφ6)

r5 exp(−iφ5) r1 exp(−iφ1) c2211 r4 exp(iφ4)

r2 exp(−iφ2) r6 exp(−iφ6) r4 exp(−iφ4) c2222


















(32)

to the separable operator ρsep defined by (30)? The two non-diagonal blocks

have been disregarded, and this obviously must be responsible for the loss of

the factor of 2 between max(∆non−sep) = 2
√

2 and max(∆sep) =
√

2. What

is the deeper reason for this loss? The non-separable operator can be written
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as the sum of its separable counterpart and an additional operator R̂:

ρnon−sep = ρsep +


















0 0 r5 exp(iφ5) r2 exp(iφ2)

0 0 r1 exp(iφ1) r6 exp(iφ6)

r5 exp(−iφ5) r1 exp(−iφ1) 0 0

r2 exp(−iφ2) r6 exp(−iφ6) 0 0


















(33)

This operator, which is canceled in the transition to ρsep, is special insofar

as its trace is equal to 0, the eigenvalues may be negative, and they depend

on the phase sum Φ = φ1 + φ2 − φ5 − φ6. So, strictly speaking, (3) does not

make sense if we replace ρ by R̂, but let us nevertheless calculate ∆(R̂) with

the operator settings as in subsection 3.1. We then obtain

∆(R̂) = 2
√

2 |r1 cosφ1 + r2 cosφ2|. (34)

We may use the restrictions imposed on r1 and r2 as given in (22),

⇒ ∆(R̂) = 2
√

2 |√c1122c2211 cosφ1 +
√
c1111c2222 cosφ2|, (35)

and it is easy to see that ∆(R̂) ≤ √
2. This means that both ρsep and the addi-

tional operator R̂ contribute equally (
√

2) to the final result max(∆non−sep) =

2
√

2, and if R̂ is omitted, the maximum of the correlation function obviously

drops by a factor of 2.

Let us view this situation from another point. We perform a measurement

of, say, Â on Alice’s sub-ensemble {Ai}. After the measurement Bob’s sub-
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ensemble is in the state

TrA

(

(Â⊗ 1̂B)(ρsep + R̂)
)

= TrA

(

(Â⊗ 1̂B)ρsep

)

+ TrA

(

(Â⊗ 1̂B)R̂
)

. (36)

The partial trace over (Â⊗ 1̂B)R̂ is equal to 0, i. e., by the measurement the

complete information contained in R̂ has been eliminated. This is equivalent

to the situation in the double-slit experiment if an additional detector is

inserted into the course of beam in front of the double-slit arrangement in

order to obtain the which-way information. As soon as the path of the

particles is determined, no interference pattern can be observed any more. So

we may identify R̂ with a phase operator carrying the essential quantum part

of the complete information about the ensemble. In this way the transition

from non-separability to separability (and therefore from entanglement to

disentanglement) may be construed as a fundamental dephasing process as

has recently been proposed by Sanctuary [21].

5 Summary

In the present contribution the following results have been achieved:

• A statistical operator acting on a product Hilbert space HA ⊗ HB is

separable if and only if it can be decomposed into a direct product of a

statistical operator acting on HA and another one acting on HB. This

17



simplified definition is in accordance with Schrödinger’s original view

on disentanglement.

• The correlation function ∆, familiar in the context of EPR-type exper-

iments, is an elegant tool to obtain phase information about statistical

operators.

• In the realm of statistical operators the transition from entanglement

to disentanglement can be viewed as the loss of a special phase operator

carrying the quantum part of the complete ensemble information.
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